

ThalesAlenia

MOSAR

Deliverable Reference	:	D2.5				
Title	:	HOTDOCK Preliminary Design Definition File (DDF)				
Confidentiality Level	:	PU				
Lead Partner	:	: Space Applications Services				
Abstract	:	This document provides key design information on HOTDOCK. It corresponds to a Design Definition File, for the Generation 1 (G1) of HOTDOCK. It covers the key aspects of the design, and should be released as a Public deliverable.				
EC Grant N°	:	821996				

Project Officer EC

: Christos Ampatzis (REA)

MOSAR is co-funded by the Horizon 2020 Framework Programme of the European Union

:

DOCUMENT APPROVAL SHEET						
	Name Organization Date					
Prepared by:	Pierre Letier Mathieu Deremetz Torsten Siedel Alin Munteanu Edgars Pavloski Benoit Lietaer	Space Applications Services				
Cross reviewed by:	Pierre Letier Jeremi Gancet Michel Ilzkovitz	Space Applications Services				

:

DOCUMENT CHANGE RECORD				
Version Date Author Changed Reas Sections / Pages			Reason for Change / RID No	
1.0.0	04/12/2019	P. Letier	All	Initial release for review by PSA
<u>1.1.0</u>	12/02/2020	P. Letier	Section 2.1	Clarification requirement FuncR_011, as feedback to RID OG09-87
			Section 2.7 and 3.2	Clarification and justification of the different declinations of HOTDOCK, as feedback to RID OG09-88

:

HOTDOCK Preliminary Design Definition File (DDF)

Contents

1	Introdu	uction		7
	1.1	Purpos	e and Context	7
	1.2	Docum	ent Structure	7
	1.3	Applica	ble Documents	7
	1.4	Refere	nce Documents	8
	1.5	Acrony	ms	8
2	Review	of HO	FDOCK Requirements	10
	2.1	Functio	nal Requirements	10
	2.2	Design	Requirements	17
	2.3	Physica	al Requirements	23
	2.4	Interfac	e Requirements	23
	2.5	Operat	ional Requirements	25
	2.6	Enviror	nmental Requirements	28
	2.7	Configu	uration Requirements	28
	2.8	Human	Factors Requirements	29
3	Systen	n Config	guration	30
	3.1	Propos	ed design	30
	3.2	Declina	itions	31
	3.3	Produc	t tree	32
4	Operat	ional D	escription	33
	4.1	Mating	and de-mating sequences	33
	4.2	State M	1achine	33
	4.3	Teleme	etries and Telecommands (TM/TC)	34
5	HOTDO	OCK Sta	Indard Interface Design	36
	5.1	Mechai	nical interface and actuation	36
		5.1.1	Coordinate system	36
		5.1.2	Mechanical Specification	37
		5.1.3	Fixation Layout	38
		5.1.4	Misalignment Tolerances and Approach Angle	39
		5.1.5	Mechanical Performances	40
	5.2	Power	and data interfaces	40
		5.2.1	Transfer	41
		5.2.2	Rerouting	41
		5.2.3	Sense	42
		5.2.4	Electrical power and data characteristics	42

:

	5.3	Thermal interface	42
	5.4	Dust protection	43
6	HOTD	OCK Controller	45
	6.1	Functional Description	45
	6.2	HOTDOCK Controller Electrical Architecture and Interfaces	45
	6.3	HOTDOCK Controller Electrical Specifications	46
7	Techr	nical Budgets	47
	7.1	Mass Budget	47
	7.2	Power Budget	47
8	Interfa	ace Requirement Document (IRD)	48
	8.1	Common to OG8, OG9 and OG11	48
	8.2	OG8 PULSAR specific	51
	8.3	OG9 MOSAR specific	53
	8.4	OG11 PRO-ACT specific	56

:

HOTDOCK Preliminary Design Definition File (DDF)

List of Figures

Figure 3-1: HOTDOCK functional architecture	30
Figure 3-2: HOTDOCK Product Tree	32
Figure 4-1: Nominal sequence of operation of HOTDOCK	33
Figure 4-2: State machine implemented in the HOTDOCK electronics.	34
Figure 5-1: HOTDOCK prototype	36
Figure 5-2: HOTDOCK coordinate system. Top: Front view. Bottom: Top view	37
Figure 5-3 HOTDOCK - Side and Top view with basic dimensions	38
Figure 5-4 HOTDOCK - back side with mounting points	38
Figure 5-5: Diagonal Engagement Trajectory	39
Figure 5-6 HOTDOCK – Range of attraction (ROA) supported by Form-Fit geometry	39
Figure 5-7 HOTDOCK – Max gap before locking	40
Figure 5-8: HOTDOCK connector plate	41
Figure 5-9: HOTDOCK prototype connector pattern	41
Figure 5-10: Thermal interface fluid connectors to be used in HOTDOCK	43
Figure 5-11: Initial dust mitigation concept	43
Figure 6-1: HOTDOCK Electrical Architecture	45

List of Tables

Table 3-1: Features of the different declinations of HOTDOCK	. 31
Table 4-1: HOTDOCK TC list	. 34
Table 4-2: HOTDOCK telemetry list	. 34
Table 5-1: Power and Data characteristics of HOTDOCK	. 42
Table 2: Comparison of main dust mitigation strategies	. 44
Table 6-1: Electrical characteristic of HOTDOCK controller	. 46
Table 7-1: Mass budget of HOTDOCK	. 47
Table 7-2: Power budget of HOTDOCK	. 47

:

:

HOTDOCK Preliminary Design Definition File (DDF)

1 Introduction

1.1 Purpose and Context

HOTDOCK is a standard robotic interface, developed by Space Applications Services, supporting mechanical, data, power and thermal transfer. Its final purpose is to be used as standard connector, in future space applications, between spacecraft and payloads, and as end effector of robotic manipulator for their manipulation and transfer.

HOTDOCK is to be used as a standard interface in H2020 MOSAR (PG9) project, as well as in H2020 PULSAR (OG8) and H2020 PRO-ACT (OG11).

Space Applications Services is currently developing the HOTDOCK technology, through successive design and prototyping iterations. The purpose of this document is to provide information about the design of HOTDOCK, with the aim of releasing that material publicly, for the community to be able to include HOTDOCK as a possible technology in H2020 Space Robotics Technologies SRC Call 3 proposals (and next such calls in the future).

1.2 Document Structure

In brief, the document is structured as follows:

Section 1: Introduction

This introductory section.

Section 2: Review of HOTDOCK requirements

Review the initial HOTDOCK requirements, also indicating where they are addressed in this document.

Section 3: System Configuration.

Gives an overview of HOTDOCK and its declinations (active, passive, etc.).

Section 4: Operational Description

Introduces HOTDOCK operational principles.

Section 5: HOTDOCK Standard Interface Design

Presents the overall design of HOTDOCK.

Section 6: HOTDOCK Controller

Provides specific information on the HOTDOCK controller.

Section 7: Technical Budgets

Summarizes the technical budgets (mass and power).

Section 8: Interface Requirements (IRD)

Provides a list of project specific requirements (MOSAR, PULSAR, PRO-ACT) influencing the design of HOTDOCK and the interfacing of HOTDOCK with project specific components.

1.3 Applicable Documents

- AD1 SRC_Guidelines_Space_Robotics_Technologies (COMPET-4-2016)
- AD2 PRSPR-ESA-T3.1-TN-D3.1-Compendium of SRC activities (for call 1)-v1.8_0

:

:

:

HOTDOCK Preliminary Design Definition File (DDF)

1.4 Reference Documents

- RD1 PULSAR (OG8) Grant Agreement
- RD2 MOSAR (OG9) Grant Agreement
- RD3 PRO-ACT (OG11) Grant Agreement

RD3RD4 D2.6 - HOTDOCK Preliminary Design Justification File

1.5 Acronyms

ADC	Analog to Digital Converter
APM	Active Payload Module
CAN	Controller Area Network
DDF	Design Definition File
DJF	Design Justification File
EGSE	Electrical Ground Support Equipment
ESA	European Space Agency
GPIO	General Purpose Input/Output
I/F	Interface
ICD	Interface Control Document
IRD	Interface Requirements Document
I2C	Inter-Integrated Circuit
LVDS	Low Voltage Differential Signaling
MAC	Media Access Control
Mbps	Megabits per second
MGSE	Mechanical Ground Support Equipment
MOSFET	Metal–Oxide–Semiconductor Field-Effect Transistor
NTC	Negative Temperature Coefficient
OG	Operational Grant
ORU	Orbital Replacement Unit
PCB	Printed Circuit Board

:

PWM	Pulse Width Modulation
ROD	Review Of Design
rpm	rotations per minute
SpW	SpaceWire
SPI	Serial Peripheral Interface
SRC	Strategic Research Cluster
ТВС	To Be Confirmed
TBD	To Be Defined
тС	TeleCommand
ТМ	TeleMetry
TRL	Technology Readiness Level
UART	Universal Asynchronous Receiver/Transmitter
USART	Universal Synchronous/Asynchronous Receiver/Transmitter

:

:

:

HOTDOCK Preliminary Design Definition File (DDF)

2 Review of HOTDOCK Requirements

This section gathers the whole set of initial requirements having served as a driver for the design and development of the HOTDOCK interface.

Note that Call 2 projects specific requirements, as further elaborated during the execution of these projects, are not reviewed here. However, we consider that the Call projects' requirements form the baseline for an Interface Requirements Document (IRD), which is provided in the Section 8 of this document.

2.1 Functional Requirements

FuncR_001	The standard interface shall provide a mechanical interface to M couple spacecraft (active) modules with each other or to the spacecraft platform and bus respectively			
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, 8.6.1Call 1 SRC Comp, R01.1			
COMMENT	1			
COVERED IN SECTION	3,4,5,6			

FuncR_002	The standard interface shall provide an electrical interface to transfer electrical energy (power)			М
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R02.2			
COMMENT	/			
COVERED IN SECTION	5.2			

FuncR_003	The standard interface shall provide a data interface to allow M exchange of data between individual modules			М
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R02.3			
COMMENT	Modules can be payload, spacecraft or robotic manipulator			
COVERED IN SECTION	5.2			

FuncR_004	The standard interface shall provide a thermal interface to allow active transfer of thermal flow			М
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, 8.6. Call 1 SRC Comp, R02 Call 1 SRC Comp, R02 Call 1 SRC Comp, R02		02.4	
COMMENT		·	•	
COVERED IN SECTION	5.3			

FuncR_005	The standard interface shall allow the mechanical, power, data and thermal coupling with another interface that cannot provide actuation			М
VERIFICATION	ROD / Testing SOURCE HOTDOCK-TN-001			
COMMENT	To support faulty device and reduced interface functions (e.g. for cost reduction)			ost
COVERED IN SECTION	4, 5			

FuncR_006	The standard interface shall allow the mechanical, power, data and thermal de-coupling with another interface that cannot provide actuation			D
VERIFICATION	ROD / Testing SOURCE HOTDOCK-TN-001			
COMMENT	To support faulty device			
COVERED IN SECTION	3,4,5			

FuncR_007	The standard interface shall be compliant with launch loads			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6 Call 1 SRC Comp, R04			
COMMENT	Compatible launch loads and conditions to be further analyzed.			
COVERED IN SECTION	3, 5			

FuncR_008	 The mechanical interface shall withstand all mechanical loads brought by external sources to the interface during operations. The standard interface shall support the transfer of the following mechanical loads in connected configuration: Axial Force: 400N Radial Force: 400N Bending Moment: 250Nm Torsion: TBD Nm 			М
VERIFICATION	Testing	SOURCE	Call 1 SRC Comp, 8. Call 1 SRC Comp, R(Call 1 SRC Comp, R(HOTDOCK-TN-001-4	02.1 04.1
COMMENT				
COVERED IN SECTION	5.1			

FuncR_009	The mechanical interface shall minimize force/torque for mating and de-mating		М	
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6 Call 1 SRC Comp, 8.0			
COMMENT				
COVERED IN SECTION	4, 5.1			

FuncR_010	The mechanical interface shall maximize positioning tolerance for mating, with a minimum of 5mm			М
VERIFICATION	TestingSOURCECall 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R04.8			
COMMENT	/			
COVERED IN SECTION	5.1			

FuncR_011	The standard interface shall be unlockable			М	
VERIFICATION	Testing SOURCE Call 1 SRC Comp, R0			03.1	
COMMENT	-	The term unlockable is interpreted by the capability for two attached interfaces to unlock by the mean of a secondary mechanism, different from			

ĺ

	the standard actuation approach/
COVERED IN SECTION	5.1 <u>.7 of</u> RD4

FuncR_012	The standard interface shall be provide dust protection			М
VERIFICATION	ROD / Testing SOURCE HOTDOCK-TN-001-4			1.5.2
COMMENT	To support planetary application	To support planetary applications		
COVERED IN SECTION	5.4			

FuncR_013	The power distribution unit shall provide low-level voltage power rails to supply the internals of the HOTDOCK interface – controller, sensors and motor drive.			М
VERIFICATION	Testing	SOURCE	Architecture Analysis	
COMMENT				
COVERED IN SECTION	5.2			

FuncR_014	The electrical interface unit shall be capable of supporting TBC W of power transfer between two standard interfaces.			М
VERIFICATION	TestingSOURCECall 1 SRC Comp, 8.6Call 1 SRC Comp, R0			
COMMENT				
COVERED IN SECTION	5.2			

FuncR_015	The electrical interface shall incorporate an overcurrent, overvoltage and thermal protection.			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6 Call 1 SRC Comp, 8.6 Call 1 SRC Comp, RC Call 1 SRC Comp, RC Internal expertise		05.1	
COMMENT	Overcurrent includes protection against surge			
COVERED IN	5.2	5.2		

SECTION	
SECTION	

FuncR_016	The electrical interface shall not cause electro-magnetic M interference in the modules being coupled which affects their functionality.			М
VERIFICATION	Testing	SOURCE Call 1 SRC Comp, R05.3		
COMMENT	The electrical interface shall pro couple modules	The electrical interface shall provide electro-magnetic compatibility against couple modules		
COVERED IN SECTION	5.2			

FuncR_017	The electrical interface shall incorporate a bidirectional power M switch to control current flow at the interface.			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, R0 Call 1 SRC Comp, R0			
COMMENT				
COVERED IN SECTION	5.2			

FuncR_018	The electrical interface shall provide temperature, and power (voltage and current) telemetry from local (TBC) and global power buses		М		
VERIFICATION	Testing SOURCE Internal Expertise				
COMMENT					
COVERED IN SECTION	5.2				

FuncR_019	Electrical system in passive state shall draw less than TBC mW of quiescent power.			М
VERIFICATION	Testing SOURCE Internal Expertise			
COMMENT				
COVERED IN SECTION	5.2, 7.2			

FuncR_020	The data interface shall allow a data rate of minimum 100Mbit/s			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6.1			6.1
COMMENT	To support the recording and pr modules	To support the recording and processing of large amounts of data between modules		
COVERED IN SECTION	5.2			

FuncR_021	The data interface shall provide duplex communication abilities			М
VERIFICATION	Review of Design SOURCE Call 1 SRC Comp, R0			06.4
COMMENT				
COVERED IN SECTION	5.2			

FuncR_022	The data interface shall support Ethernet or EtherCAT bus			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, RC		06.5	
COMMENT				
COVERED IN SECTION	5.2			

FuncR_023	The data interface shall support SpaceWire bus			М
VERIFICATION	Testing SOURCE HOTDOCK-TN-001-4 MOSAR) OG5 expertise		l.5.2 (OG9-	
COMMENT				
COVERED IN SECTION	5.2			

FuncR_024	The data interface shall support at least one technology with M capabilities of dynamic data bus re-configuration and routing			М
VERIFICATION	Testing	Testing SOURCE HOTDOCK-TN-001-4.5.2 (OC		

		MOSAR)
COMMENT		
COVERED IN SECTION	5.2, 6	

FuncR_025	The thermal interface shall allow a thermal flow rating of: TBD W. M			М
VERIFICATION	Testing	SOURCE	Call 1 SRC Comp, 8.	6.1
COMMENT				
COVERED IN SECTION	5.3			

FuncR_026	The thermal interface shall provide active regulation of thermal flow			М
VERIFICATION	Testing	SOURCE	Call 1 SRC Comp, 8.	6.1
COMMENT				
COVERED IN SECTION	5.3			

FuncR_027	The interface controller shall be able to control the actuator and process the associated sensors		М	
VERIFICATION	Testing	SOURCE	System architecture	
COMMENT				
COVERED IN SECTION	6			

FuncR_028	The microcontroller shall convert required analog sensor signals to digital values and store them in internal memory.		М	
VERIFICATION	Testing	SOURCE	System Architecture	
COMMENT				
COVERED IN SECTION	6			

FuncR_029	 HOTDOCK interface based on Alignment / proximity state Temperature Controller supply volta Controller current constants Connection status Motor position 	 Temperature Controller supply voltage Controller current consumption Connection status Motor position 		
VERIFICATION	Testing	SOURCE	System architecture	
COMMENT				
COVERED IN SECTION	6			

FuncR_030	The interface controller shall be to send and receive TM/TC from the module/spacecraft/EGSE OBC		М	
VERIFICATION	Testing	SOURCE	System Architecture	
COMMENT				
COVERED IN SECTION	6			

FuncR_031	The interface controller shall be able to monitor the status of connection of the interface			М
VERIFICATION	Testing SOURCE Previous SIROM expertise			ertise
COMMENT				
COVERED IN SECTION	6			

2.2 Design Requirements

DesR_001	The standard interface shall have an androgynous design			М
VERIFICATION	Review of Design SOURCE Call 1 SRC Comp, 8.6 HOTDOCK-TN-001			6.1
COMMENT				

COVERED IN SECTION	3, 5.1			
DesR_002	The standard interface shall have	ve a scalable	design	Μ
VERIFICATION	Review of Design	SOURCE	CE Call 1 SRC Comp, 8.6.1	
COMMENT				
COVERED IN SECTION	5.1			

DesR_003	The standard interface design shall feature one-failure-tolerance redundancy The mechanism should not have single point of failure components			М
VERIFICATION	Review of Design / TestingSOURCECall 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R03.5 Call 1 SRC Comp, R04.9 (med Call 1 SRC Comp, R06.5 (data) 			03.5 04.9 (mech)
COMMENT	This is applicable to the different sub-interfaces. Includes sensors, motors and electronic boards. If additional parts can't be included, then a proof of high design margins shall apply.			
COVERED IN SECTION				

DesR_004	The standard interface design shall present a low complexity with minimization of moving parts		М	
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, 8.6Call 1 SRC Comp, R0			
COMMENT				
COVERED IN SECTION	5.1			

DesR_005	The standard interface shall have a robust design			М
VERIFICATION	Analysis / Testing	SOURCE	Call 1 SRC Comp, 8. ECSS-E-ST-33-01	6.1

COMMENT	 Mechanism design shall take into account worst-case combinations (including uncertainties) of: Extreme operational and survival steady state Transient temperature Mechanism heat dissipation Temperature gradients across the assembly (differential expansion)
COVERED IN SECTION	5

DesR_006	The standard interface shall present a 90deg. rotational symmetry			М
VERIFICATION	Review of Design SOURCE Call 1 SRC Comp, 8.6 Call 1 SRC Comp, RC HOTDOCK-TN-001-4			03.6
COMMENT				
COVERED IN SECTION	5.1			

DesR_007	The standard interface shall allow diagonal engagement up to 65 deg			М
VERIFICATION	Testing SOURCE HOTDOC-TN-001-4.5			5.2
COMMENT	a 1	60 deg. Corresponds to the worst case provided by the PULSAR application, and considering 5 deg of margin		
COVERED IN SECTION	5.1			

DesR_008	The standard interface shall provide guidance form-fit features M			М
VERIFICATION	Testing SOURCE HOTDOC-TN-001-4.5.2			5.2
COMMENT	To support the alignment process between two interfaces, specifically when multiple connections are considered.			
COVERED IN SECTION	5.1			

DesR_009	The standard interface shall be designed from dissimilar materials in case metallic materials are used	D(S)	
----------	--	------	--

:

VERIFICATION	Review of Design	SOURCE	Call 1 SRC Comp, R03.10
COMMENT	The implementation of this requirement in the context of this activity (non-space compatible device) needs to be confirmed, in regards to the additional costs. If not compliant, the design adaptation and material selection to reach a flight compatible design shall be described.		
COVERED IN SECTION	5.1		

DesR_010	The standard interface controller shall be integrated within the mechanical housing			М
VERIFICATION	Review of Design / Inspection SOURCE Internal Expertise			
COMMENT	In some circumstance with multiple standard interfaces connected to the same module, it could be interesting to centralize the controller functions and remove it from the individual interfaces (architecture TBD)			
COVERED IN SECTION	5, 6			

DesR_011	The electrical interface shall be integrated within the mechanical housing			М
VERIFICATION	Review of Design / Inspection SOURCE Internal Expertise			
COMMENT	In some circumstance with multiple standard interfaces connected to the same module, it could be interesting to centralize the electrical interface functions and remove them from the individual interfaces (architecture TBD) The possibility to integrate the electrical interface electronics would be function of the required power rate transfer and list of functionalities.			
COVERED IN SECTION	5			

DesR_012	Mechanism shall be designed with a lubrication function (dry or liquid) at the contact surfaces which are in relative motion			M(S)
VERIFICATION	Inspection (Part count) SOURCE ECSS-E-ST-33-01			
COMMENT	The sliding surface should have lubrication (liquid or solid) to prevent wear and particle contamination. Only space grade lubricants must be used.			
COVERED IN SECTION	5.1			

DesR_013	The motorization assembly shall provide the minimum required torque for the worst lifetime conditions			М
VERIFICATION	Analysis/Test SOURCE ECSS-E-ST-33-01			
COMMENT	The final motorization torque shall incorporate the uncertainty factors			
COVERED IN SECTION	5.1			

DesR_014	The interface shall incorporate the minimum design safety factors M(S)			M(S)	
VERIFICATION	Analysis Test	SOURCE	ECSS-E-ST-33-01 ECSS-E-ST-32-10		
COMMENT	Model uncertainty, fatigue life, b demonstrated	Model uncertainty, fatigue life, buckling safety factors against yield must be demonstrated			
COVERED IN SECTION	5.1				

DesR_015	Peak hertzian contact stress shall below 93% of yield			М
VERIFICATION	Analysis SOURCE ECSS-E-ST-33-01 ECSS-E-ST-32-10			
COMMENT	The model shall exhibit stress values smaller than 93% of the weakest material during operation			
COVERED IN SECTION	5.1			

DesR_016	Dissimilar metals shall have galvanic compatibility		М	
VERIFICATION	Analysis SOURCE ECSS-E-ST-33-01 ECSS-Q-ST-70			
COMMENT	Metal contact should prevent ga	Metal contact should prevent galvanic corrosion		
COVERED IN SECTION	5.1			

DesR_017	Selected materials shall be cracked resistant		М	
VERIFICATION	Analysis SOURCE ECSS-E-ST-33-01 ECSS-Q-ST-70			
COMMENT	The material of the interface shall have a high resistance to corrosion cracking			
COVERED IN SECTION	5.1			

DesR_018	Materials shall be flame retardant		M(S)	
VERIFICATION	Analysis SOURCE ECSS-Q-ST-70-71			
COMMENT	Low flammability materials for all components (harness, electronics, lubricants)			, lubricants)
COVERED IN SECTION	5			

DesR_019	Materials shall have low outgassing and toxicity		M(S)	
VERIFICATION	Analysis SOURCE ECSS-Q-ST-70-71 ECSS-E-ST-33-01			
COMMENT	All components (harness, electr	All components (harness, electronics, lubricants)		
COVERED IN SECTION	5			

:

HOTDOCK Preliminary Design Definition File (DDF)

2.3 Physical Requirements

PhysR_001	The standard interface shall be optimized regarding the mass M			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R03.7 Call 1 SRC Comp, R04.10		03.7	
COMMENT				
COVERED IN SECTION	5, 7			

PhysR_002	The standard interface shall be optimized regarding size and Nolume		М	
VERIFICATION	TestingSOURCECall 1 SRC Comp, 8.6.1 Call 1 SRC Comp, R03.7			
COMMENT				
COVERED IN SECTION	5			

2.4 Interface Requirements

IntR_001	The standard interface shall provide a mechanical connection to the module, spacecraft bus or robotic end-effector manipulator, compatible with the mechanical loads transferred through the interface.			
VERIFICATION	Review of DesignSOURCECall 1 SRC Comp, R01.2Call 1 SRC Comp, R04.6			
COMMENT				
COVERED IN SECTION	5			

IntR_002	The standard interface shall provide internal harnessing to connect power and data buses from the module, spacecraft or robotic end-effector manipulator		М	
VERIFICATION	Review of Design SOURCE Internal expertise			
COMMENT				

:

COVERED IN SECTION	5.2
-----------------------	-----

IntR_003 (TBC)	The standard interface shall implement required RCOS software components			M (TBC)
VERIFICATION	Review of Design SOURCE Call 1 SRC Comp, R1		11	
COMMENT				
COVERED IN SECTION				

IntR_004 (TBC)	The standard interface shall allow data and commands transfer to/from other RCOS components through standardized RCOS data types			M (TBC)
VERIFICATION	Testing SOURCE Call 1 SRC Comp, R11.1, R1			11.1, R11.2
COMMENT				
COVERED IN SECTION	5.2, 6			

IntR_005	The microcontroller shall provide command and telemetry of HOTDOCK interface to the APM/ASM computing unit.			
VERIFICATION	Testing	Testing SOURCE System Architecture		
COMMENT				
COVERED IN SECTION	6			

IntR_006	The thermal interface shall enable thermal connection to the module structure			
VERIFICATION	Review of Design SOURCE			
COMMENT				
COVERED IN SECTION	5.3			

:

HOTDOCK Preliminary Design Definition File (DDF)

2.5 Operational Requirements

OpR_001	The standard interface shall be compatible with robotic servicing operations			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6.1			6.1
COMMENT				
COVERED IN SECTION	3, 4			

OpR_002	The standard interface shall be reusable			М	
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.0 Call 1 SRC Comp, RC				
COMMENT	Our current assumption is that the number of required cycles should range between 100 and 1000 cycles (TBC)				
COVERED IN SECTION	3, 4, 5				

OpR_003	The standard interface shall allow module connections without restriction on relative module orientation			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, 8.6.1		6.1	
COMMENT	Related to androgynous and symmetry characteristics			
COVERED IN SECTION	5.1			

OpR_004	The open/locked state shall be detectable			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, RC		03.3	
COMMENT				
COVERED IN SECTION	5.1, 5.2			

OpR_005	Relative module orientation of the standard interface shall be detectable	М	
---------	---	---	--

:

VERIFICATION	Testing	SOURCE	Call 1 SRC Comp, R03.4
COMMENT	1		
COVERED IN SECTION	5.1, 5.2		

OpR_006	The standard interface shall be able to open and close multiple times (including data, power thermal connectors mating/demating)MThe standard interface shall allow TBD mating/demating cyclesImage: Constrained content of the standard interface shall allow the standard int			М
VERIFICATION	TestingSOURCECall 1 SRC Comp, R04.4 (mech) Call 1 SRC Comp, R05.5 (elec) Call 1 SRC Comp, R06.2 (data) Call 1 SRC Comp, R07.2 (therm)			05.5 (elec) 06.2 (data)
COMMENT	Our current assumption is that the number of required cycles should range between 100 and 1000 cycles (TBC)			
COVERED IN SECTION	5.1, 5.2			

OpR_007	The temperature of the interface shall be monitored			М
VERIFICATION	Testing SOURCE HOTDOCK-TN-001-4		1.5.2	
COMMENT				
COVERED IN SECTION	5.1			

OpR_008	The good alignment before starting the mating process shall be M detectable.			М
VERIFICATION	Testing SOURCE HOTDOCK-TN-001-4.5.2			1.5.2
COMMENT				
COVERED IN SECTION	5.1			

OpR_009 The standard interface controller shall be able to be switched on/off	D
--	---

VERIFICATION	Testing	SOURCE	Internal expertise	
COMMENT	In regards to the total mission time, the operation time of the standard interface controller is very small. For energy optimization, it could be interesting to be able to switch off this component (and be able to revive it later).			
COVERED IN SECTION	5.1, 6			

OpR_010	 The power consumption of the standard interface shall be minimized with a maximum of : 0.5W in passive mode (controller switched off) 2W in idle mode (controller switched on / motor off) 10W in active mode (controller switched on / motor on) 			М	
VERIFICATION	Testing SOURCE SIROM expertise		SIROM expertise		
COMMENT	Values TBC.				
COVERED IN SECTION	7.2				

OpR_011	The coupling time between two standard interfaces shall be minimized			М
VERIFICATION	Testing	SOURCE	SIROM expertise	
COMMENT				
COVERED IN SECTION	4, 5			

OpR_012	The mechanism shall be maintenance free during storage and ground operation			М
VERIFICATION	Inspection SOURCE ECSS-E-ST-33-01			
COMMENT	No maintenance or human intervention should be made during ground tests and operations			
COVERED IN SECTION				

:

:

HOTDOCK Preliminary Design Definition File (DDF)

2.6 Environmental Requirements

EnvR_001	The standard interface shall withstand space environment conditions			M / D (S)
VERIFICATION	/ SOURCE Call 1 SRC Comp, 8.6 Call 1 SRC Comp, R04 Call 1 SRC Comp, R04 (thermal)		04.5 (mech) 05.6 (elec) 06.3 (data)	
COMMENT	No testing in the current activity under space conditions.			
COVERED IN SECTION	Not addressed in this document.			

EnvR_002	The standard interface shall withstand operational environmental conditions			М
VERIFICATION	Testing SOURCE Call 1 SRC Comp, R03.9			03.9
COMMENT	No testing in the current activity under space conditions.			
COVERED IN SECTION	Not addressed in this document.			

EnvR_003	The standard interface shall withstand temperature range between -55 and 85 C.			М
VERIFICATION	Analysis			
COMMENT	As a first step towards space compatible design, this is the selected range of temperature to be supported by the interface for the current developments. The current activity doesn't foreseen verification by testing for this requirement.			
COVERED IN SECTION	Not addressed in this document	t.		

2.7 Configuration Requirements

ConfR_001	The standard interface shall be declined in different configurations that are:	D
	 Active Passive (not active behavior but can be couple and transmit data and power) Mechanical (not active and can only be coupled) 	

VERIFICATION	Review of Design / Testing	SOURCE	OGs costs and physical characteristics constraints	
COMMENT	This is mainly to support costs and volume/weight reduction in the ground demonstrators. This could also be applicable in future mission depending on specific mission characteristics. See section 3.2 for added explanation			
COVERED IN SECTION	3, 5			

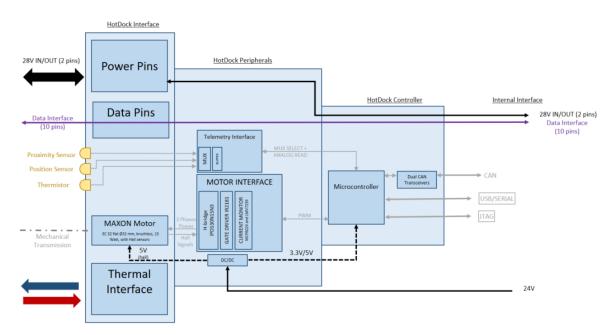
2.8 Human Factors Requirements

HumR_001	If used in manned area then mechanism shall be compliant with Human Factor requirements			M(S)
VERIFICATION	Inspection SOURCE SSP 57000R			
COMMENT	Sharp edges, corners, uncovered holes bigger than 10 mm, uncovered slots shall not be present			
COVERED IN SECTION	5.1			

•

HOTDOCK Preliminary Design Definition File (DDF)

3 System Configuration


3.1 Proposed design

HOTDOCK is a standard robotic mating interface supporting mechanical, data, power and thermal transfer. Its main application is to allow assembly and reconfiguration of spacecraft and payloads onorbit and on planetary surfaces. It makes it straightforward to replace failed modules, or to swap payloads and provide chainable data interfaces for multiple module configurations.

HOTDOCK provides the following interfaces:

- The mechanical interface that provides the alignment, connection and load transfer capabilities. It is composed of fixed element and movable locking elements.
- The power interface, for the transfer of electrical power, through a central connector plate and POGO connectors
- The data interface, for the transfer of CAN and/or SpW data, through the central connector plate and POGO connectors

HOTDOCK includes also an internal PCB controller for local management (actuators, sensors, TM/TC communication) and external harnessing to access the power/data interface pins and the internal controller/powering of the device.

Figure 3-1: HOTDOCK functional architecture

The HOTDOCK mechanical interface provides the following main features:

- <u>Androgynous design</u>: both on the mechanical and electrical connections, such that one HOTDOCK can mate any other ones, with similar design.
- <u>90-degree symmetry:</u> on the mechanical and electrical side, that provides additional redundancy and increases the range of possible position/orientation for mating, for easier robotic manipulation or compatibility with parallelepiped spacecraft modules

- <u>Form-fit guidance</u>: tooth like geometries on the circumference enable self-guidance positioning during the final approach process and compensation for a range of transversal and orientation misalignments. The form-fit is also designed to support straight and diagonal engagement. The form fit has also a main role in the mechanical load transfer capabilities of the interface.
- Locking mechanism: is implementing peripheral locking elements equipped with steel balls that acts on the form-fit geometry of the other mated HOTDOCK. This simple solution offers high transversal and bending load transfer capabilities with good tolerance for misalignment and thermal gradient.

3.2 Declinations

In order to respond to different type of applications and constraints (for both the current OGs and future exploitation), different declinations of HOTDOCKs are currently considered, as illustrated in Table 3-1:

- <u>Active</u>: full features interface with active locking mechanism, supporting mechanical, data and power transmission.
- <u>Active Thermal</u>: active version including thermal interface for fluid transfer (under development)
- **Passive**: interface without actuation but providing capabilities to transfer mechanical, data and power. An Active interface is required to lock to a passive one.
- <u>Mechanical</u>: interface without actuation and without data/power transfer (connector plate). It supports only mechanical transmission. An active interface is required to lock to a mechanical one
- **<u>Dummy/Visual</u>**: visual representation of an HOTDOCK (e.g. 3D printed of the external mechanical structure), not supporting mechanical transmission.

The mating between two HOTDOCK requires always at least one Active (thermal) version that can connect to another Active, a Passive or Mechanical one. In the last case, the interface supports only the mechanical load transmission (not power and data).

Name	Visual	Mating	Mechanical Transmission	Data Transmission	Power Transmission	Thermal Transmission
Active	~	\checkmark	\checkmark	\checkmark	\checkmark	
Active Thermal	~	✓	~	~	~	~
Passive	\checkmark		✓	\checkmark	\checkmark	
Mechanical	✓		✓			
Dummy/Visual	✓					

Table 3-1: Features of the different declinations of HOTDOCK

An Active HOTDOCK is a full featured HOTODCK (with possibly the thermal interface). The passive version is a more simple version, that removes the actuation and control sub-system. It remains the mechanical structure and the central connector plate to allow mechanical, data and power transmission with an active HOTDOCK. In a passive version, there is no moving part. The active one is able to mechanically attach to it, as well drive the central connector plate to reach the passive one.

In our exploitation analysis, it appeared that the passive version has a good potential to be used, especially when talking about payload operations:

- The passive is smaller in height and lighter
- It has no active components (actuator, electronics) and is more simple
- It is less expensive
- A passive version can be installed on a spacecraft/satellite with less integration constraints, waiting for an active one to connect to it (e.g. as part of a next mission). We think that this can be a great advantage for the early exploitation and diffusion of the technology (very low impact on spacecraft design)
- We can more easily envisage the installation of several interface point due to the limited integration constraints.
- We can also envisage a mechanical version (without the central connector plate for data and power), when we need only to manipulate items (e.g. beam structures)

3.3 Product tree

Figure 3-2 presents the top level HOTDOCK product tree, highlighting the main components of the product. The preliminary design description of these components is provided in the following sections.

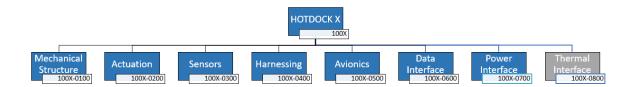


Figure 3-2: HOTDOCK Product Tree

:

:

HOTDOCK Preliminary Design Definition File (DDF)

4 Operational Description

4.1 Mating and de-mating sequences

Figure 4-1 illustrates the nominal sequence of operation of HOTDOCK and the associated states of the powering, latching and connector plate:

- **Offline**: the device is neither powered, latched or connected for data and power transfer (e.g. when the HOTDOCK is not used).
- Idle: the device is powered, able to exchange CAN TM/TC but not latched nor connected for data and power transfer.
- Latched: the device is powered and mechanically latched to another HOTDOCK (active, passive or mechanical). The connector plate is not deployed.
- **Connected**: the device is powered, latched and connected for data and power transfer (the connector plate is deployed to get contact with the other HOTDOCK connector plate.
- Locked: the device is powered off, while in connected mode (e.g. when the full connection operation is finished) (state TBC for OG demos).

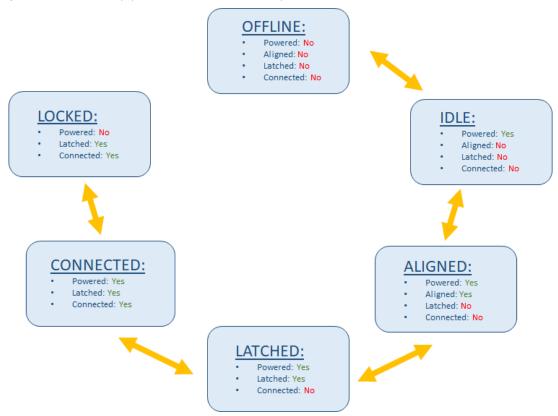
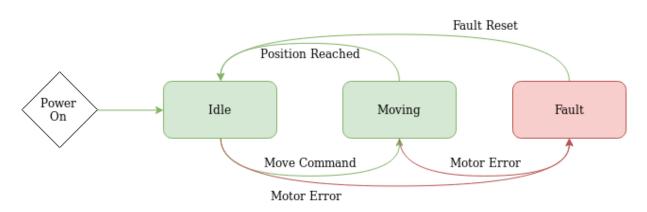


Figure 4-1: Nominal sequence of operation of HOTDOCK


4.2 State Machine

The HOTDOCK control electronics run a simple state machine (shown in Figure 4-2). This state machine is comprised of the 3 explicit states (Idle, Moving, Fault) and one implicit state (Power On).

·

HOTDOCK Preliminary Design Definition File (DDF)

Figure 4-2: State machine implemented in the HOTDOCK electronics.

When power is applied to the HOTDOCK the controller boots up and enters the "Power On" state. In this state initial set-up tasks such as setting up sensors and initialising the communications module are performed. After completing these the device enters the "Idle" state and awaits commands from the CAN module. When a CAN command is received the device enters the "Moving" state; the motor is commanded to actuate the device in the "Open" or "Close" directions. When the target position is reached the device transitions back into the "Idle" state and waits for further commands. At any time, a "Stop" command can be sent to halt the operation of the device.

During operation, the firmware continuously monitors the state of the system to detect anomalies such as the motor position exceeding the allowed range or the cycle time of the main loop exceeding the required threshold. Errors are signalled by transitioning the device to the "Fault" state in which all motor operation is stopped. To recover from this error, the system must send a "Fault Recovery" command which may trigger automatic error recovery mechanisms to bring the system back into a known state. All other commands are rejected.

4.3 Telemetries and Telecommands (TM/TC)

Following tables provide a preliminary list of telecommands and telemetry to interface HOTDOCK through the CAN control interface. This list is currently informative and subject to evolutions.

ТМС Туре	Packet ID	Field Name	Field Offset	Field Size	Description
TC – Control Cmd	TC_1	GOTO_1	0x00	1B+CRC	State Machine :: Set Requested State
TC – Control Cmd	TC_2	STOP_1	0x00	1B+CRC	Motor :: Emergency Stop
TC – Control Cmd	TC_3	RSET_1	0x00	1B+CRC	Reset Controller
TC – Control Cmd	TC_4	LED	0x00	2B+CRC	LED :: control + pattern
TC – Control Cmd	TC_5	Power Bus On/OFF	0x00	1B+CRC	Power Bus switching (N+R) (TBC if managed by HOTDOCK)

Table 4-1: HOTDOCK TC list

Table 4-2: HOTDOCK telemetry list

ТМС Туре	Packet ID	Field Name	Field Size	Description
TM - House Keeping	HK_1	THM_1	1B	Thermistor 1 (Motor)
TM - House Keeping	HK_1	THM_2	1B	Thermistor 2 (MCU)

:

TM - House Keeping	HK_1	THM_3	1B	Thermistor 3 (Pogo PCB)
TM - House Keeping	HK_1	HALL_1	1B	Proximity Hall effect Sensor 1
TM - House Keeping	HK_1	HALL_2	1B	Proximity Hall effect Sensor 2
TM - House Keeping	HK_1	HALL_3	1B	Proximity Hall effect Sensor 3
TM - House Keeping	HK_1	HALL_4	1B	Proximity Hall effect Sensor 4
TM - House Keeping	HK_1	CRC_1	1B	HK_1 Packet CRC
TM - House Keeping	HK_2	LOCK_1	1B	Locking ring position
TM - House Keeping	HK_2	POSI_2	2B	Absolute position sensor
TM - House Keeping	HK_2	MTI_1	2B	Motor Current [A]
TM - House Keeping	HK_2	MTS_1	2B	Motor Speed [rpm]
TM - House Keeping	HK_2	CRC_1	1B	HK_2 Packet CRC
TM - House Keeping	HK_3	PNV_1	2B	Power Bus N Voltage
TM - House Keeping	HK_3	PNI_1	2B	Power Bus N Current
TM - House Keeping	HK_3	PRV_1	2B	Power Bus R Voltage
TM - House Keeping	HK_3	PRI_1	2B	Power Bus R Current
TM - House Keeping	HK_4	STAT_1	1B	State Machine :: Current State / Request
TM - House Keeping	HK_4	SWV_1	1B	FSW Version
TM - House Keeping	HK_4	ERR_1	1B	Current Error Code
TM - House Keeping	HK_4	CRC_2	1B	HK_2 Packet CRC
TM - Acknowledge	AK_1	ACK_1	7B+CRC	TC has been properly received/parsed
TM - Acknowledge	AK_2	ACK_2	7B+CRC	TC has been properly Processed
TM - Acknowledge	ER_1	ERR_1	7B+CRC	Spontaneous Error Code

HOTDOCK Preliminary Design Definition File (DDF)

5 HOTDOCK Standard Interface Design

5.1 Mechanical interface and actuation

This section provides a general description of the HOTDOCK mating interface. Figure 5-1 represents the current state of the HOTDOCK prototype. It provides the following interfaces:

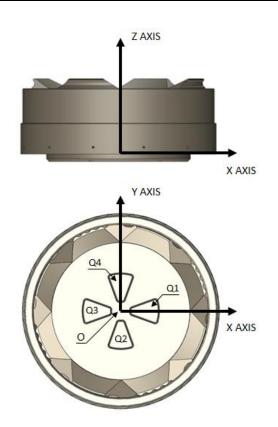
- The mechanical interface that provides the alignment, connection and load transfer capabilities. It is composed of fixed element and a movable locking ring.
- The power interface, for the transfer of electrical power, through the central connector plate and POGO connectors
- The data interface, for the transfer of CAN and/or SpW data, through the central connector plate and POGO connectors

The interface features also an internal PCB controller for local management (actuators, sensors, TM/TC communication) and external harnessing to access the power/data interface pins and the internal controller/powering of the device.

Figure 5-1: HOTDOCK prototype

5.1.1 Coordinate system

The coordinate system selected for the HOTDOCK envelope is shown in Figure 5-2. The coordinate center, denoted O, is on the center point of the HOTDOCK diameter of HOTDOCK bottom plate.


The coordinate axis of HOTDOCK are defined such that:

- Axis X goes from the coordinate center towards the androgyny plane of the first quarter of HOTDOCK connector plate (Q1).
- Axis Y is perpendicular to axis X, such that the direction of axis Z goes outside of HOTDOCK.
- Axis Z goes through the coordinate center O and is perpendicular to the bottom plate

:

HOTDOCK Preliminary Design Definition File (DDF)

Figure 5-2: HOTDOCK coordinate system. *Top*: Front view. *Bottom*: Top view.

5.1.2 Mechanical Specification

The axial motion of the locking system is achieved by the transmission of a barrel-cam mechanism driven by a brushless DC motor connected to a gearing system. The gearing system is also driving a sensor shaft equipped with an absolute sensor, used to detect the motion and position of the locking ring.

The HOTDOCK interface outer geometry follows an entirely round shape. The body is machined in high strain aluminium alloy with surface coating. Figure 5-3 shows the external dimensions of the active declination of the interface. The passive and mechanical versions have the same outer diameter but present a reduced thickness, guided as function of the required mounting interface.

The HOTDOCK interface shall be mounted on the back side as shown in Figure 5-4 using M3 bolts. The ring of mounting points is close to the outer diameter which leads to a reduced stress of the mounting elements. The number of mounting points as well as the diameter of the bolt fixation ring will be consolidated following the PDR phase.

The back-side features openings to let through control, data and power harnessing, with connectors facing out.

The form-fit is designed to support straight and diagonal coupling trajectories up to 65 degrees (up to an aperture angle of 130 degrees).

:

•

HOTDOCK Preliminary Design Definition File (DDF)

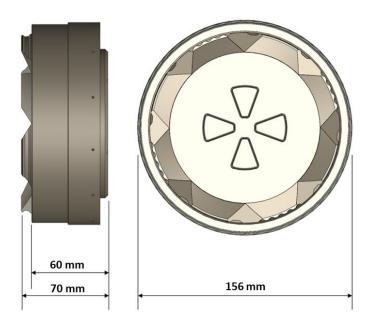
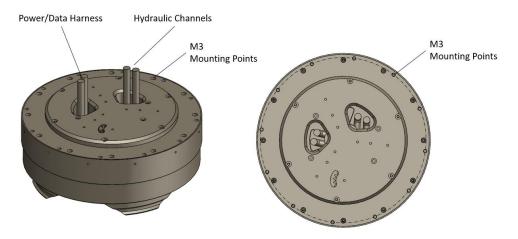
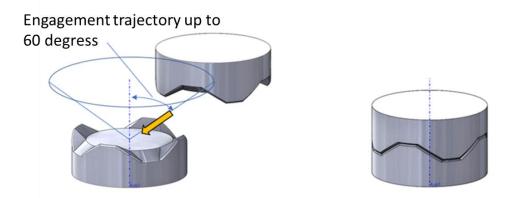


Figure 5-3 HOTDOCK - Side and Top view with basic dimensions

5.1.3 Fixation Layout

The HOTDOCK interface shall be mounted on the back side as shown in Figure 5-4 using M3 bolts. The ring of mounting points is close to the outer diameter which leads to a reduced stress of the mounting elements. The number of mounting points as well as the diameter of the bolt fixation ring will be presented at PDR-Meeting.




Figure 5-4 HOTDOCK - back side with mounting points.

The back-side features openings to let pass control, data and power harnessing, with connectors facing out.

5.1.4 Misalignment Tolerances and Approach Angle

HOTDOCK's form-fits are designed to support straight and diagonal coupling trajectory up to 65 degrees (up to an aperture angle of 130 degrees) compatible with three simultaneous approaches in hexagonal structure shape – which is considered a "worse case", typically as required in PULSAR.

Figure 5-5: Diagonal Engagement Trajectory

Misalignment tolerances are covered according to two scenarios:

- 1) Misalignment tolerance when two sides are approaching by external guidance (e.g. robotic system).
- 2) Misalignment tolerance acceptable when starting coupling procedure.

Figure 5-6 shows the maximum misalignment tolerances of the Form-Fit geometry when two interfaces are approaching (scenario 1). The presented figures are based on preliminary motions studies performed by DLR, using a compliant robotic manipulator.

Figure 5-6 HOTDOCK – Range of attraction (ROA) supported by Form-Fit geometry.

Figure 5-7 shows the acceptable, remaining distance before the coupling procedure can be initiated. While coupling, both HOTDOCK interfaces will force each other into their final coupling position, that remains without gap.

:

HOTDOCK Preliminary Design Definition File (DDF)

Figure 5-7 HOTDOCK – Max gap before locking.

5.1.5 Mechanical Performances

We provide below key values about the mechanical performances achieved so far with the HOTDOCK interface.

Provided values are quite conservative, in the sense that they correspond to actual test results, performed with non-optimized prototype versions of HOTDOCKs, built from aluminium only.

Axial load transfer performance with 2 active HOTDOCKs coupled	500N (could not go higher with test setup)
Bending moment performance with 2 active HOTDOCK coupled	100Nm (maximum)
Bending moment performance with 1 active HOTDOCK coupled to 1 passive HOTDOCK	65Nm (maximum)

5.2 Power and data interfaces

The HOTDOCK power and data interface are integrated in the inner section of the interface, through a connector plate (Figure 5-8). Both electrical power and data are transferred via a set of spring-loaded connectors also known as "Pogo" connectors. They are particularly tolerant to misalignment and prevent accumulation of dirt or dust. This keeps the power and data transfer interface simple and subsequently improves its reliability.

The connector plate is a PCB board split in four sections, equipped with a set of pogo pins and pads. They are arranged in mirror to ensure the androgynous and symmetric characteristic of the interface. The current version includes 128 connections that can be freely configured for data (CAN and/or SpW) and power transmission, including signal redundancy.

The connector plate is translated through the same drive mechanism than the locking system. The barrel cam is configured to ensure the timing sequence of the deployment. The range of motion allows an active interface to connect to a passive one (see below for active/passive definition).

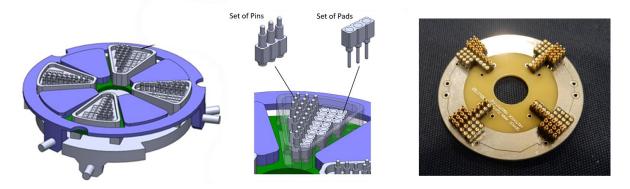


Figure 5-8: HOTDOCK connector plate

The data and electrical power transmission is performed through a bespoke connector PCB. This subsystem of the interface has three main functions: transfer, rerouting and sense.

5.2.1 Transfer

Power and data can be transferred to a mated HOTDOCK through a set of spring-loaded POGO pins. Each pin can transfer up to 3A of peak current. Dielectric separation distance between the POGO pins allows to transfer power with voltage >100V. The flexibility of connector layout makes it easy to integrate the POGOs in various patterns. Example shown below:

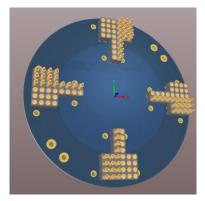


Figure 5-9: HOTDOCK prototype connector pattern

The prototype connector PCB is designed to withstand up to 8400W power transfer over 28 pins. Depending on the interface requirements (speed, number of signals), various data protocols can be implemented with the connector plate. Prototype design allows SpaceWire transfer of 100Mbps over 5.5m. Higher data rates can be accommodated with custom PCBs with correct track impedance.

5.2.2 Rerouting

In order to allow 90-degree androgynous design, data transfer implementation requires rerouting capability. For HOTDOCK with LVDS data interface (e.g. SpaceWire) this is achieved with an LVDS Crosspoint Switch.

110

42

HOTDOCK Preliminary Design Definition File (DDF)

Date

Page

The orientation of the HOTDOCK with respect to its mate is detected by reading a voltage on dedicated orientation pins of the mated HOTDOCK.

The controller then commands the crosspoint switch to route the signal pairs to their corresponding positions. In order to have this androgynous capability it is required to keep the crosspoint switch powered during data transmission. Some crosspoint switches offer buffering of the select state which means that the HOTDOCK controller does not have to be active once the switch is configured.

5.2.3 Sense

The connector PCB will provide telemetry for current and voltage passed though the HOTDOCK interface.

Manufacturing process of the connector plate requires custom made stencils to maintain the correct position and height of the POGO pins.

Electrical power and data characteristics 5.2.4

Preliminary characteristics of the data and power interface are summarized in table 5-1.

POWER TRANSFER INTERFACE – single channel					
Parameter	Notes	Min	Тур	Мах	Unit
DC Resistance		0.3		0.5	Ohms
Current	Per power pin				Amps
Voltage				130	Volts
	DATA TRANSFER IN	ITERFACE - S	SPACEWIRE	(LVDS)	
Parameter	Notes	Min	Тур	Мах	Unit
Impedance	Characteristic impedance of transmission line		100		Ohms

Table 5-1: Power and Data characteristics of HOTDOCK

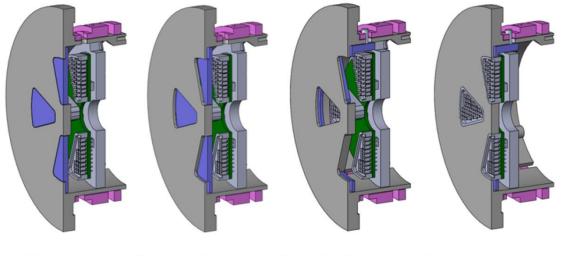
5.3 Thermal interface

The thermal interface previously developed in OG5 remains the baseline for thermal transfer in HOTDOCK.

The thermal interface is based on a double-quick connecting system for fluid circulation and heat exchange between a heat source and a heat sink up to 1400 W (cold side).

Although the connectors were formerly integrated in the SIROM demonstrators for validation of the connection/disconnection forces, the actual thermal transfer testing was performed on separate setup.

Different aspects have been successfully tested including heat exchange capabilities, leakage (with connection/disconnection), pressure drop or type of fluids.


Figure 5-10: Thermal interface fluid connectors to be used in HOTDOCK

In HOTDOCK, the thermal interface consists in 4 pairs of hydraulic connectors (one male and one female) integrated in a structural part. Two flexible metallic bellows are used to accommodate the required stroke for connection of the whole HOTDOCK. Additionally, two redundant NTC temperature sensors are integrated in HOTDOCK in order to measure the temperature before connection.

5.4 Dust protection

The purpose of the dust protection is to avoid internal contamination of the system (control electronics,...) and ensure the correct mechanical and data/power connection, despite the external conditions.

An initial concept of dust protection with HOTDOCK, based on retractable shutters, has been proposed in the initial phase of the project. This concept is illustrated below.

1. Closed 2. Shutter Retracted 3. Shutter Turned 4. Connector Pads Deployed

Figure 5-11: Initial dust mitigation concept

During the deployment procedure, the mechanism drives a double motion of shutters, with a successive translation and rotation, to free the path for the connector plate.

Based on the latest status of the design, and targeting a simplification of the internal mechanism, a trade-off analysis has been performed in order to analyse different solutions that could be considered, including actions on the interface design, but also actions at mission level, in order to propose alternative dust mitigations strategies.

Table 2: Comparison	of main dust	mitigation	strategies
---------------------	--------------	------------	------------

Mitigation Measure	Pros	Cons
Cover Lid	 Full protection of HOTDOCK. The area of protection could also be increased. Long duration protection (low aging of the protection) Simple mechanical approach without additional mechanism on HOTDOCK Full accessible area for the connector plate 	 Requires additional operation with the robotic manipulator Exposure of the elements during the transition phase between cover removal and HOTDOCK connection.
Environmental Sealing	 Static approach without additional mechanism on HOTDOCK Good protection of the internal components Full accessible area for the connector plate 	 Remaining exposure of mechanical and connector components Efficiency and aging of the elements protecting movable components
Rotative Cover	 Protection of the connector plate Opening of the protection when HOTDOCK are mechanically connected (no exposure during operations) Driven directly by HOTDOCK drive system (no external intervention) 	 Remaining exposure of mechanical components Reduce by half the usable connector plate surface Additional mechanism and motion transmission inside HOTDOCK, and with passive interface Pushing of existing dust on the surface during the motion of the plate
Grid / Membrane	 Static approach without additional mechanism on HOTDOCK Good protection of the internal components Full accessible area for the connector plate 	 Remaining exposure of mechanical and connector components Aging of the used material

The topic of dust protection is very complex and highly demanding in terms of technologies, especially for the targeted applications on the Moon or Mars. By nature, the HOTDOCK design offers good initial protection against dust, especially once matted (closed system). Some weaknesses however remain, that need to be addressed for future missions. In practice we expect that an effective dust protection strategy should implement several of these concepts in order to offer the best possible protection.

•

HOTDOCK Preliminary Design Definition File (DDF)

6 HOTDOCK Controller

6.1 Functional Description

The HOTDOCK controller requires the following functionalities:

- Motor control field oriented control of a brushless motor with hall sensor feedback (required for the latching process of the interface).
- Sensor interface reading and processing signals about temperature, power consumption, docking proximity and internal mechanical state.
- Telemetry and tele-command allow command and telemetry exchange between HOTDOCK and the host system over a standard bus (e.g. CAN).
- Connector plate control command the connector PCB to reroute LVDS signals according to orientation.
- Power conversion local low-level bus generation from the supplied 24V for supplying the microcontroller and supporting circuitry, including sensors.
- Power switching in some HOTDOCK applications it is desirable to have the ability to control the electrical power flow through the interface. This requires an interface to either a solid state switch (bi-directional MOSFETs) or a relay.

6.2 HOTDOCK Controller Electrical Architecture and Interfaces

The electrical architecture is presented below. Important to note is that the controller is implemented as a round-shaped custom PCB to seamlessly fit around the HOTDOCK mechanism. The main functional blocks of the controller are shown in the architecture.

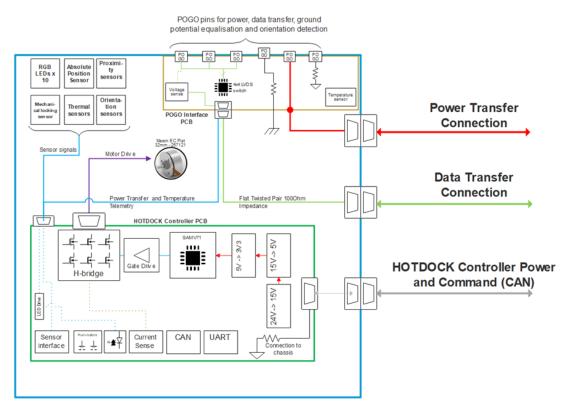


Figure 6-1: HOTDOCK Electrical Architecture

The HOTDOCK controller has the following functionalities:

- 114 GPIOs with external interrupt capability Connector plate control, motor control and sensor interface
- 2048 KBytes of flash programming and logging system's state
- Temperature sensor
- Low-power sleep and wait modes lowering power consumption
- USB 2.0, Ethernet MAC, UART, USART, I2C, SPI, CAN communication (telemetry and telecommand)
- PWM motor control
- 24 ADC inputs sensor interface

The brushless motor requires three phase control that is achieved through a proper front end chain (Hbridge, gate drive and buffer) that receives a PWM signal from the microcontroller.

All analog signals are passed through a set of buffers to remove the sensor impedance effect on the readings.

CAN bus is chosen as the main tele-command and telemetry interface due to its robustness, increasing space applications and ease of use.

A set of linear voltage regulators are used to convert the external supply (24V) to 3.3V, 5V and 15V to supply the microcontroller, sensors, CAN transceiver, motor control gate drive and other circuits.

If the HOTDOCK requires power switching capability integrated at the interface, additional circuitry will be added to allow MOSFET switch or relay control.

6.3 HOTDOCK Controller Electrical Specifications

A preliminary overview of electrical specifications is listed in Table 6-1.

Table 6-1: Electrical characteristic of HOTDOCK controlle	ər
---	----

HOTDOCK CONTROLLER						
Parameter	Notes	Min	Тур	Max	Unit	
Power						
Input Voltage	Regulated 24V bus	23.5	24.00	24.5	V	
Input Current	Idle		50		mA	
	During latching		150		mA	
	Sleep mode		20		mA	
CAN						
CAN baud-rate		125		1000	kbps	

:

:

:

HOTDOCK Preliminary Design Definition File (DDF)

7 Technical Budgets

7.1 Mass Budget

Mass budget for the HOTDOCK assembly and related subcomponents is detailed in the Table below. Mass margin is 10%. Thermal connectors and related circuitry is not included in that mass budget.

Module	Part	Unit mass (kg)	Quantity	Mass (kg)	SF	Mass with margin (kg)	SubAssy mass with margin
К							
Housing							0.5951
	Main Housing and cover	0.311	1	0.311	1.1	0.3421	
	Form Fit	0.183	1	0.183	1.1	0.2013	
	Front plate	0.047	1	0.047	1.1	0.0517	
Moto-reducer							0.1749
	Motor	0.057	1	0.057	1.1	0.0627	
	Gears	0.093	1	0.093	1.1	0.1023	
	Sensor	0.009	1	0.009	1.1	0.0099	
Guiding elemer	nts						0.0176
	Bearing	0.008	2	0.016	1.1	0.0176	
Barrel Cam							0.1177
	Barrel Structure	0.056	1	0.056	1.1	0.0616	
	Internal gear	0.051	1	0.051	1.1	0.0561	
Docking Ring							0.321662
	Ring Structure	0.152	1	0.152	1.1	0.1672	
	Actuated internal ring	0.123	1	0.123	1.1	0.1353	
	Balls	0.000871	20	0.01742	1.1	0.019162	
Connector plate	2						0.0627
	PCB	0.032	1	0.032	1.1	0.0352	
	PCB support	0.025	1	0.025	1.1	0.0275	
Cables							0.11
	Data, power lines	0.1	1	0.1	1.1	0.11	
HOTDOCK Contr	roller						0.165
	Controller board	0.15	1	0.15	1.1	0.165	
TOTAL HOTDOC	ĸ			1.42242			1.564662

Table 7-1: Mass budget of HOTDOCK

7.2 Power Budget

An estimate of the power consumption for the main HOTDOCK components are provided in the Table below.

Body	State	Components	Unit power (W)	Quantity	Power (W)
HOTDOCK Co	ntroller				
	Operation				
		Motor	1.5	1	1.5
		Controller	1.2	1	1.2
			Total Opera	ation	2.7

Table 7-2: Power budget of HOTDOCK

:

:

:

HOTDOCK Preliminary Design Definition File (DDF)

8 Interface Requirement Document (IRD)

This section covers HOTDOCK interface requirements as driven by the Call 2 projects OG8 PULSAR, OG9 MOSAR and OG11 PRO-ACT, and corresponds to the content one may expect in a standalone "Interface Requirements Document" (aka. IRD).

8.1 Common to OG8, OG9 and OG11

HOTDOCK-IRD- COMMON -0010	SI androgynous design	Mandatory
STATEMENT The SI shall have an androgynous design, including mechanical, data and power interfaces		power interfaces

HOTDOCK-IRD- COMMON -0020	Form-Fit Guidance	Mandatory
STATEMENT	The standard interface shall provide guidance form-fit features	

HOTDOCK-IRD- COMMON -0030	SI Symmetry	Mandatory
STATEMENT	The standard interface shall present a 90deg. rotational symmetry, includir and thermal interface	ng mechanical, data, power

HOTDOCK-IRD- COMMON -0040	SI alignment	Mandatory
STATEMENT	The two SI shall be correctly aligned before starting their mating process and the information shall be confirmed to the OBC	

HOTDOCK-IRD- COMMON -0050	SI connection monitoring and confirmation	Mandatory
STATEMENT	The connection process shall be monitored and the good connection of the SI shall be confirmed to the OBC.	

HOTDOCK-IRD- COMMON -0060	SI design configuration	Mandatory
STATEMENT	The SI design shall allow active, passive and mechanical configuration	

:

HOTDOCK-IRD- COMMON -0070	SI cost	Mandatory
STATEMENT	The design of the SI shall take into account optimization of the manufacturing and integration costs	

HOTDOCK-IRD- COMMON -0080	SI Mass	Mandatory
STATEMENT	The standard interface shall be optimized regarding its mass	

HOTDOCK-IRD- COMMON -0090	SI Volume	Mandatory
STATEMENT	The standard interface shall be optimized regarding size and volume	

HOTDOCK-IRD- COMMON -0100	SI power consumption	Mandatory
STATEMENT	The power consumption of the standard interface shall be minimized	

HOTDOCK-IRD- COMMON -0110	Mechanical, Data and Electrical Interface	Mandatory
STATEMENT	 The SI shall provide a mechanical interface to mechanically couple two system composition an electrical interface to transfer electrical energy (power) betwee a data interface to allow exchange of data between two system composition 	en two system components

HOTDOCK-IRD- COMMON -0120	Passive coupling and decoupling	Mandatory
STATEMENT	SI shall allow the coupling and decoupling with another interface that cannot provide actuation	

HOTDOCK-IRD- COMMON-0130	Electrical Interface Switch	Mandatory
STATEMENT	The electrical interface shall incorporate a bidirectional power switch to	control current flow at the

:

:

:

interface.

HOTDOCK-IRD- COMMON-0140	SI Telemetry	Mandatory
STATEMENT	 The SI shall measure and store the following local SI parameters: Temperature (Power electronics if local, structure) Alignment / proximity status Locking status SI orientation (in relation with design symmetry) Data/Power interface status Thermal interface status Motor position (incremental or absolute) / Mechanism position (at Motor current Controller supply voltage 	osolute)

HOTDOCK-IRD- COMMON-0150	SI current protection	Mandatory
STATEMENT	Each SI power transmission shall be protected against short-circuit and su	rge

HOTDOCK-IRD- COMMON-0160	SI redundant Data/Power/Control interfaces	Mandatory
STATEMENT	The SI shall feature redundant data, power and control interface	

:

HOTDOCK Preliminary Design Definition File (DDF)

8.2 OG8 PULSAR specific

HOTDOCK-IRD-I	PULSAR-0010 SI connected to RAS
Requirement	The RAS end-effector shall provide a mechanical connection to the SI and support mechanical loads of the application
Compliance	Mandatory.

HOTDOCK-IRD-F	PULSAR-0020 SI connected to SMT
Requirement	The SMT shall provide several mechanical connections to the SI and support mechanical loads of the application
Compliance	Mandatory.

HOTDOCK-IRD-P	ULSAR-0030	SI approach angle
Requirement	The SI shall allow	w an approach angle of minimum 65 degrees
Compliance	Mandatory	

HOTDOCK-IRD-P	PULSAR-0040 SI mechanical load capacity
Requirement	The SI mechanical interface shall support the mechanical loads applied during PULSAR demonstration operations
Compliance	Mandatory

HOTDOCK-IRD-	-PULSAR-0050	SI tile powering
Requirement	The SI power in	nterface shall support powering of its own controller and the payload of the SMT

:

|--|--|--|--|

HOTDOCK-IRD-I	PULSAR-0060 SI power transfer
Requirement	The SI power interface shall support the electrical power rating transfer between tiles as required by the application
Compliance	Mandatory

HOTDOCK-IRD-P	PULSAR-0070 SI power switching
Requirement	We shall be able to switch the power transmission for each individual SI of the SMT.
Compliance	Mandatory

HOTDOCK-IRD-F	PULSAR-0080 SI data bus
Requirement	The SI data interface shall allow data transmission between the OBC and the SMT controller for TM/TC of the SMT payload
Compliance	Mandatory

HOTDOCK-IRD-F	PULSAR-0090 SI CAN interface
Requirement	The SMT controller shall interface the SI CAN bus controller to transfer SI TM/TC received from the OBC
Compliance	Mandatory

:

HOTDOCK Preliminary Design Definition File (DDF)

8.3 OG9 MOSAR specific

HOTDOCK-IRD- MOSAR-0010	Thermal Interface	Mandatory
STATEMENT	The standard interface shall provide a thermal interface to allow active transfer of thermal flow between two Spacecraft Modules	

HOTDOCK-IRD- MOSAR-0020	Data Interface Support	Mandatory
STATEMENT	The data interface shall support at least one technology with capabilities of dynamic data bus re-configuration and routing	

HOTDOCK-IRD- MOSAR-0030	Mechanical Loads	Mandatory
STATEMENT	 The mechanical interface shall withstand, in connected mode, all mechanic induced by the demonstration operations: Axial Force: 250 / 160 N Radial Force: 250 / 160 N Bending Moment: 204 / 84 Nm Torsion: TBD Nm As function of the gravity compensation of the SM (TBC). 	cal loads

HOTDOCK-IRD- MOSAR-0040	Power Transfer Rating	Mandatory
STATEMENT	The electrical interface shall be capable of supporting [1-2kW] (TBC) of power transfer, as required by the MOSAR demonstration	
	The power interface of the SM shall support [1-2kW] [TBC] of power transf	er

HOTDOCK-IRD- MOSAR-0050	Data Interface Rating	Mandatory
STATEMENT	The data interface shall allow a data rate of minimum 50Mbit/s	

HOTDOCK-IRD- MOSAR-0060	Thermal Interface Rating	Mandatory
STATEMENT	The thermal interface shall allow a thermal flow rating of: TBD W	

:

HOTDOCK-IRD- MOSAR-0070	Mechanical Interface to Components	Mandatory
STATEMENT	The standard interface shall provide a mechanical connection to the modules, spacecraft bus or robotic base/end-effector manipulator, compatible with the mechanical loads transferred through the interface.	

HOTDOCK-IRD- MOSAR-0080	Harnessing to Components	Mandatory
STATEMENT	The standard interface shall provide internal harnessing to connect power, data and control buses from the module, spacecraft or robotic base/end-effector manipulator	

HOTDOCK-IRD- MOSAR-0090	Interface to Module Thermal System	Mandatory
STATEMENT	T The thermal interface shall enable thermal connection to the thermal module sub- system	

HOTDOCK-IRD- MOSAR-0100	Power Distribution Unit	Mandatory
STATEMENT	The SI shall be interfaced with a Power Distribution Unit (PDU) to provide low-level voltage power rails to supply the internal components of the SI (controller, sensors and motor drives)	

HOTDOCK-IRD- MOSAR-0110	Standard Interface TM/TC	Mandatory
STATEMENT	The SI shall be able to send/receive local TM/TC to/from the module or space. TM: See FuncR_D109 list TC: • Coupling / de-coupling (TBC for intermediate states) • Electrical power transfer on/off • Low-level control (TBC)	acecraft OBC

HOTDOCK-IRD- MOSAR-0120	Diagonal Engagement	Mandatory
STATEMENT	The standard interface shall allow diagonal engagement up to 55 deg	

HOTDOCK-IRD- MOSAR-0130	Standard Interface ShutDown	Desirable
STATEMENT	The standard interface (or a part of it) shall be able to be switched off/on (behave as a passive plug), while ensuring data and power transfer.	

HOTDOCK-IRD- MOSAR-0140	Coupling Time	Mandatory
STATEMENT	The coupling time between two standard interfaces shall be minimized	

HOTDOCK-IRD- MOSAR-0150	SI Safe Manipulation	Mandatory
STATEMENT	The SI shall be safe to be manipulated during integration within SM, WM or Spacecraft Buses. If there exist potential risks, they shall be well documented	

HOTDOCK-IRD- MOSAR-0160	SI Design Configurations	Mandatory
STATEMENT	 The standard interface shall be declined in different configurations that are Active Passive (not active behavior but can be couple and transmit data Mechanical (not active and can only be coupled) Thermal (including thermal interface connectors, either active or page) 	and power)

:

HOTDOCK Preliminary Design Definition File (DDF)

8.4 OG11 PRO-ACT specific

HOTDOCK-IRD- PRO-ACT-0010	RWA HOTDOCK alignment
STATEMENT	The RWA (IBIS or Gantry) shall ensure HOTDOCK alignment before starting the connection process. Note: The associated technical capabilities of the RWA (and potentially annexes systems as visual servoing) will be function of the selected HOTDOCK electro-mechanical technology (position accuracy, compliant control). The tolerance translation error to initiate the connection process from 10 to 15mm (with then an initial phase of form fit guidance).
LEVEL	Mandatory

HOTDOCK-IRD- PRO-ACT-0020	RWA compliant control
STATEMENT	The RWA (IBIS or Gantry) shall provide compliant control during the HOTDOCK approach or connection process (as function of the selected technology)
LEVEL	Mandatory

HOTDOCK-IRD- PRO-ACT-0030	Dust Protection
STATEMENT	The HOTDOCK interface shall provide dust protection in connected mode
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0040	Gripper data interface
STATEMENT	The HOTDOCK interface shall support the transfer of TM/TC between the IBIS and the gripper (through the data interface).
LEVEL	Mandatory

:

HOTDOCK-IRD-PRO- ACT-0050	Gripper power interface
STATEMENT	The HOTDOCK interface shall support power transfer to operate the gripper (through the power interface).
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0060	3D head data interface
STATEMENT	The HOTDOCK interface shall support the transfer of TM/TC between the gantry OBC and the 3D printed head.
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0070	3D head power interface
STATEMENT	The HOTDOCK interface shall support power transfer to operate the 3D printed head
LEVEL	Mandatory

HOTDOCK-IRD- PRO-ACT-0080	Automatic HOTDOCK status confirmation
STATEMENT	The HOTDOCK interface shall provide automatic confirmation of the connection status to support autonomous operations, as tool exchange
LEVEL	Mandatory

HOTDOCK-IRD- PRO-ACT-0090	HOTDOCK power transfer switch and monitoring
STATEMENT	The HOTDOCK power interface could provide switching and monitoring capabilities

:

LEVEL	Optional (not mandatory for the application. With the simple power architecture of the system, the functionallinity could be provided by external components)
	external components)

HOTDOCK-IRD- PRO-ACT-0100	HOTDOCK mechanical loads
STATEMENT	 Connected HOTDOCK interfaces shall support mechanical loading during PRO-ACT demonstrations scenarios: Bucket granding: bucket weight, debris and ground reaction forces (initial estimation: 400N in longitudinal and transversal force, 120Nm, for 40kg pressure and 0.3m lever arm) IBIS Gripper: gripper weight, lifted object and mechanical interaction forces Payload: weight of the payload and interaction forces (with IBIS or gantry application) (initial estimation: 200N in longitudinal and transversal force, 100Nm in bending torque, for a box of 20kg, COG 0.5m) Gantry 3D Head: weight of the 3D printing head in operating mode
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0110	HOTDOCK interface to IBIS
STATEMENT	The IBIS manipulator end-effector (end of the mechanical chain) shall be equipped with an active HOTDOCK interface
LEVEL	Mandatory

HOTDOCK-IRD-PRO-ACT- 0120	HOTDOCK interface to bucket
STATEMENT	The bucket tool shall be equipped with a mechanical HOTDOCK interface
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0130	HOTDOCK interface to gantry
------------------------------	-----------------------------

STATEMENT	The gantry end-effector (end of the mechanical chain) shall be equipped with an active HOTDOCK interface
LEVEL	Mandatory

HOTDOCK-IRD-PRO-ACT- 0140	HOTDOCK interface to gripper
STATEMENT	The gripper shall be equipped with a passive HOTDOCK interface
LEVEL	Mandatory

HOTDOCK-IRD-PRO-ACT- 0150	HOTDOCK interface to 3D printed head
STATEMENT	The 3D printed head shall be equipped with a passive HOTDOCK interface
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0160	HOTDOCK Power and Control EGSE
STATEMENT	The RWA (IBIS or gantry) shall provide power and TM/TC interface (CAN communication) to operate the active HOTDOCK.
LEVEL	Mandatory

HOTDOCK-IRD-PRO- ACT-0170	HOTDOCK configurations
STATEMENT	To cover the PRO-ACT scenarios, the following number of HOTDOCK interfaces (per configuration) shall be delivered:

:

LEVEL	Mandatory
-------	-----------

HOTDOCK-IRD-PRO- ACT-0180	HOTDOCK symmetry
STATEMENT	The HOTDOCK interface should provide connection symmetry (mechanical and data interface) to simplify robotic operations
LEVEL	Desirable

HOTDOCK-IRD-PRO- ACT-0190	HOTDOCK Diagonal Engagement
STATEMENT	The HOTDOCK interface should allow diagonal engagement to relax constraint of RWA trajectory planning and precision requirements
LEVEL	Desirable

HOTDOCK-IRD-PRO- ACT-0200	HOTDOCK operation monitoring
STATEMENT	The HOTDOCK operations and TM shall be monitored and displayed to the operator.
LEVEL	Desirable

HOTDOCK-IRD-PRO- ACT-0210	HOTDOCK mechanical robustness
STATEMENT	The HOTDOCK interface shall be robust to mechanical interaction in disconnected mode
LEVEL	Mandatory

HOTDOCK-IRD- PRO-ACT-0220	HOTDOCK interaction force monitoring
------------------------------	--------------------------------------

STATEMENT	The RWA could provide force feedback information to stop/reduce operation if HOTDOCK maximum load are exceeded (to avoid to break HOTDOCK interface in case of off-nominal operation)
LEVEL	Desirable

:

HOTDOCK Preliminary Design Definition File (DDF)

End of Document
